*n33 orbifold symmetries of cantic tilings: 3.6.n.6
Symmetry
*n32
[1+,2n,3]
= [(n,3,3)]
Spherical Euclidean Compact Hyperbolic Paracompact
*233
[1+,4,3]
= [3,3]
*333
[1+,6,3]
= [(3,3,3)]
*433
[1+,8,3]
= [(4,3,3)]
*533
[1+,10,3]
= [(5,3,3)]
*633...
[1+,12,3]
= [(6,3,3)]
*∞33
[1+,∞,3]
= [(∞,3,3)]
Coxeter
Schläfli
=
h2{4,3}
=
h2{6,3}
=
h2{8,3}
=
h2{10,3}
=
h2{12,3}
=
h2{∞,3}
Cantic
figure
Vertex 3.6.2.6 3.6.3.6 3.6.4.6 3.6.5.6 3.6.6.6 3.6..6

Domain
Wythoff 2 3 | 3 3 3 | 3 4 3 | 3 5 3 | 3 6 3 | 3 ∞ 3 | 3
Dual
figure
Face V3.6.2.6 V3.6.3.6 V3.6.4.6 V3.6.5.6 V3.6.6.6 V3.6.∞.6